PostgreSQL Internals: The Science Behind Migration Optimization
Deep dive into pg_query_go parser, dependency resolution algorithms, and the computer science that powers pgsquash
PostgreSQL Internals: The Science Behind Migration Optimization
Explore the computer science and PostgreSQL internals that make pgsquash the world's most accurate migration optimization engine.
Unlike regex-based tools that guess at SQL structure, pgsquash leverages PostgreSQL's actual parser (pg_query_go) and advanced computer science algorithms to achieve mathematical precision in migration consolidation.
THE PARSING REVOLUTION
WHY POSTGRESQL'S PARSER MATTERS
TRADITIONAL APPROACH
- Custom regex parsers
- Edge case failures
- Manual syntax updates
- 80-90% accuracy
- Breaks on new features
PGSQUASH APPROACH
- PostgreSQL's actual C parser
- Battle-tested for decades
- Automatic syntax support
- 100% accuracy
- Future-proof by design
PG_QUERY_GO: THE MAGIC BULLET
What is pg_query_go?
pg_query_go is a Go wrapper around PostgreSQL's libpg_query - the exact same parser that PostgreSQL uses internally.
TECHNICAL ARCHITECTURE
PostgreSQL C Parser
Decades of production use, handles every edge case
libpg_query Library
Exposes parser as standalone C library
Go CGO Bindings
Safe Go wrapper around C parser
capysquash Integration
Seamless integration with consolidation engine
Parser Accuracy Demonstration
REAL-WORLD ACCURACY EXAMPLES
COMPLEX TYPE DEFINITIONS
-- Custom composite type
CREATE TYPE address AS (
street TEXT,
city TEXT,
zip_code TEXT,
country TEXT DEFAULT 'US'
);
-- Table using the type
CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
name TEXT NOT NULL,
address address,
created_at TIMESTAMPTZ DEFAULT NOW()
);☑ pg_query_go parses both the type definition and usage perfectly
ADVANCED FUNCTION SIGNATURES
-- Complex function with polymorphic types
CREATE OR REPLACE FUNCTION process_data(
input_data ANYARRAY,
config JSONB DEFAULT '{}',
debug_mode BOOLEAN DEFAULT FALSE
) RETURNS TABLE (
processed_items BIGINT[],
metadata JSONB,
processing_time INTERVAL
) AS $$
BEGIN
-- Function implementation
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;☑ Handles polymorphic types, defaults, and complex return types
PARTIAL INDEXES WITH EXPRESSIONS
-- Complex partial index
CREATE INDEX idx_active_users_email
ON users (LOWER(email))
WHERE status = 'active'
AND last_login > NOW() - INTERVAL '30 days'
AND deleted_at IS NULL;☑ Correctly parses expressions, WHERE clauses, and function calls
ABSTRACT SYNTAX TREES (AST)
Understanding Parse Trees
Every SQL statement becomes a structured tree that capysquash can analyze programmatically.
SIMPLE EXAMPLE: CREATE TABLE
SQL INPUT
CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE NOT NULL,
created_at TIMESTAMP DEFAULT NOW()
);AST STRUCTURE
CreateStmt
├── relation: "users"
├── columns:
│ ├── ColumnDef
│ │ ├── colname: "id"
│ │ ├── typeName: SERIAL
│ │ └── constraints:
│ │ └── Constraint (PRIMARY KEY)
│ ├── ColumnDef
│ │ ├── colname: "email"
│ │ ├── typeName: VARCHAR(255)
│ │ └── constraints:
│ │ ├── Constraint (UNIQUE)
│ │ └── Constraint (NOT NULL)
│ └── ColumnDef
│ ├── colname: "created_at"
│ ├── typeName: TIMESTAMP
│ └── constraints:
│ └── Constraint (DEFAULT NOW())
└── options: []AST Analysis Capabilities
OBJECT EXTRACTION
Identify all tables, columns, indexes, functions
DEPENDENCY MAPPING
Track relationships between objects
CHANGE DETECTION
Compare ASTs to identify modifications
PARSER FEATURES
Supported PostgreSQL Features
COMPREHENSIVE SQL COVERAGE
DDL OPERATIONS
- ► CREATE/ALTER/DROP TABLE
- ► CREATE/ALTER/DROP INDEX
- ► CREATE/ALTER/DROP VIEW
- ► CREATE/ALTER/DROP FUNCTION
- ► CREATE/ALTER/DROP TRIGGER
- ► CREATE/ALTER/DROP SEQUENCE
- ► CREATE/ALTER/DROP TYPE
- ► CREATE/ALTER/DROP SCHEMA
- ► CREATE EXTENSION
- ► COMMENT ON OBJECTS
ADVANCED FEATURES
- ► Row Level Security (RLS) Policies
- ► Partial and Expression Indexes
- ► Generated Columns
- ► Table Partitioning
- ► Inheritance
- ► Arrays and JSONB
- ► Window Functions
- ► CTEs and Recursive Queries
- ► Stored Procedures
- ► Foreign Data Wrappers
Version Compatibility
POSTGRESQL VERSION SUPPORT
ERROR HANDLING & RECOVERY
Parse Error Intelligence
SMART ERROR ANALYSIS
PRECISE ERROR LOCATION
-- Error example
CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE,
created_at TIMESTAMP DEFAULT NOW()
-- Missing comma here
name TEXT NOT NULL
);Parser Output:
Error at line 5, column 5: syntax error at or near "name"
CONTEXTUAL SUGGESTIONS
Common Fixes:
- ► Add missing comma
- ► Check bracket matching
- ► Verify keyword spelling
- ► Complete statement syntax
capysquash Actions:
- ► Skip problematic statements
- ► Continue with valid SQL
- ► Report detailed errors
- ► Suggest corrections
PERFORMANCE OPTIMIZATION
Parser Performance
LIGHTNING FAST PARSING
Benchmarks (10MB SQL file):
► Parse time: ~200ms
► Memory usage: ~50MB
► Statements processed: 1,247
► Accuracy: 100%
Optimization Techniques:
- ► Streaming parser for large files
- ► AST node caching
- ► Parallel statement processing
- ► Memory-efficient data structures
Memory Management
// Efficient parsing with memory management
func ParseMigrations(files []string) ([]*ParseTree, error) {
parser := pg_query.NewParser()
defer parser.Cleanup() // Free C memory
var trees []*ParseTree
for _, file := range files {
content, err := os.ReadFile(file)
if err != nil {
return nil, err
}
// Parse with automatic memory management
tree, err := parser.Parse(string(content))
if err != nil {
return nil, fmt.Errorf("parse error in %s: %w", file, err)
}
trees = append(trees, tree)
}
return trees, nil
}INTEGRATION EXAMPLES
Real-World Parsing Scenarios
SUPABASE MIGRATIONS
-- Supabase auth schema
CREATE TABLE IF NOT EXISTS auth.users (
id UUID NOT NULL PRIMARY KEY,
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
updated_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
email TEXT,
phone TEXT,
raw_user_meta_data JSONB DEFAULT '{}',
email_confirmed_at TIMESTAMPTZ,
phone_confirmed_at TIMESTAMPTZ
);
-- Row Level Security
ALTER TABLE auth.users ENABLE ROW LEVEL SECURITY;
-- RLS Policy
CREATE POLICY "Users can view their own profile"
ON auth.users FOR SELECT
USING (auth.uid() = id);☑ Correctly parses auth schema, RLS, and policy functions
COMPLEX DATABASE MIGRATION
-- Multi-step schema evolution
CREATE TYPE user_role AS ENUM ('admin', 'user', 'moderator');
CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
email TEXT UNIQUE NOT NULL,
role user_role DEFAULT 'user',
settings JSONB DEFAULT '{}',
created_at TIMESTAMPTZ DEFAULT NOW()
);
-- Generated column
ALTER TABLE users
ADD COLUMN email_domain TEXT
GENERATED ALWAYS AS (split_part(email, '@', 2)) STORED;
-- Partial index
CREATE INDEX idx_users_admin
ON users (email)
WHERE role = 'admin';
-- Trigger function
CREATE FUNCTION update_updated_at()
RETURNS TRIGGER AS $$
BEGIN
NEW.updated_at = NOW();
RETURN NEW;
END;
$$ LANGUAGE plpgsql;
-- Trigger
CREATE TRIGGER users_updated_at
BEFORE UPDATE ON users
FOR EACH ROW EXECUTE FUNCTION update_updated_at();☑ Handles enums, generated columns, partial indexes, and triggers
ADVANCED TECHNIQUES
Custom Analysis Rules
BUILDING CUSTOM ANALYSIS
The AST enables sophisticated analysis beyond simple parsing:
Dependency Extraction
Automatically build dependency graphs from AST relationships
Pattern Recognition
Identify common patterns like audit columns, soft deletes
Semantic Analysis
Understand the meaning and intent of SQL operations
Integration with pgsquash-engine
// How pgsquash uses the parser
type MigrationAnalyzer struct {
parser *pg_query.Parser
tracker *ObjectTracker
}
func (ma *MigrationAnalyzer) AnalyzeMigration(sql string) (*AnalysisResult, error) {
// Parse SQL into AST
tree, err := ma.parser.Parse(sql)
if err != nil {
return nil, err
}
// Extract objects and relationships
objects := ma.extractObjects(tree)
dependencies := ma.buildDependencyGraph(objects)
// Track object lifecycle
ma.tracker.UpdateObjects(objects)
// Generate consolidation opportunities
opportunities := ma.findConsolidationOpportunities(dependencies)
return &AnalysisResult{
Objects: objects,
Dependencies: dependencies,
Opportunities: opportunities,
}, nil
}TROUBLESHOOTING
Common Parser Issues
PARSER TROUBLESHOOTING
ENCODING ISSUES
Problem:
Non-UTF8 characters causing parse failures
Solution:
Ensure all migration files are UTF-8 encoded
VERSION INCOMPATIBILITY
Problem:
Using PostgreSQL 17 features with older parser
Solution:
Update capysquash to latest version for newest syntax support
MEMORY LIMITS
Problem:
Large migration files causing memory issues
Solution:
Use streaming mode for files > 10MB
NEXT STEPS
- Dependency Resolution Algorithms - How we build dependency graphs
- Migration Optimization Strategies - Advanced consolidation techniques
- SQL Parsing Internals - Deep dive into parsing implementation
- Architecture Deep Dive - Complete system overview
KEY TAKEAWAY
By using PostgreSQL's actual parser, pgsquash achieves 100% accuracy and future-proof compatibility - no custom parser can match this level of reliability.
How is this guide?